# Chapter 2 Review Page 70 Question 1

Answer: **D**  $\frac{7}{50} = \frac{14}{100}$  is a proportion.

## Chapter 2 Review Page 70 Question 2

Answer: **B**  $\frac{3}{5}$  is a ratio.

## Chapter 2 Review Page 70 Question 3

Answer: **E** 4:3:2 is a three-term ratio.

Chapter 2 Review Page 70 Question 4

Answer: **A** \$2.75 per tin is a unit price.

### Chapter 2 Review Page 70 Question 5

Answer: **G** 27 km/h is a unit rate.

## Chapter 2 Review Page 70 Question 6

**a**) The ratio of red squares to blue squares is 6:6.

**b**) The ratio of blue squares to total squares is 6:12.

c) Dividing each term of the ratio 6:12 by 6 yields the equivalent ratio 1:
2. Dividing each term of the ratio 6:12 by 2 yields the equivalent ratio 3:
6.

**d**) There are 6 red squares out of a total of 12 squares. Divide 6 by 12:  $6 \div 12 = 0.5 = 50\%$ .



# Chapter 2 Review Page 70 Question 7

a) There are 6 two-digit numbers in the red hexagon. There are a total of 16 two-digit numbers. The ratio of two-digit numbers in the red hexagon compared to the total number of two-digit numbers is 6:16.
b) Divide each term of the ratio 6:16 by 2. The fraction in lowest



terms is  $\frac{3}{8}$ .

c) There are 8 two-digit numbers containing a 2. There are 4 two-digit numbers in the red hexagon containing a 2. The ratio of two-digit numbers containing a 2 compared to the number of two-digit numbers in the red hexagon that contain 2 is 8:4.

# Chapter 2 Review Page 70 Question 8

a) The ratio of yellow to red to silver vehicles is 1:2:5.

**b**) There are 5 + 4 + 2 + 1 = 12 vehicles that are silver, blue, red, or yellow. There are 20 vehicles in all. Subtract 12 from 20: 20 - 12 = 8. There are 8 vehicles that are not silver, blue, red, or yellow.

c) There are 4 blue vehicles and 20 vehicles in total, so the ratio 4 to 20 could represent blue vehicles to total vehicles.

**d**) There are 5 silver vehicles. There are 8 vehicles that are not silver, blue, red, or yellow. The ratio 5:8 could represent the silver vehicles to the number of vehicles that are not silver, blue, red, or yellow.

e) There are 5 silver vehicles and 20 vehicles in total, so the ratio of silver to total vehicles is  $\frac{5}{20} = \frac{1}{4} = 25\%$ .

## Chapter 2 Review Page 70 Question 9

a) The team played 18 games and won 10 games, so it lost 18 - 10 = 8 games.

**b**) The team won 10 games and lost 8 games, so the win–loss ratio is 10:8.

## Chapter 2 Review Page 70 Question 10

**a**) The length of A'B' is 24 mm. The length of AB is 6 mm. The ratio of the length of A'B' to the length of AB is 24:6.

**b**) The length of A'C' is 48 mm. The length of AC is 12 mm. The ratio of the length of A'C' to the length of AC is 48 : 12.



c) To determine the multiplier, divide the length of the radius of the enlargement by the length of the radius of the original:  $24 \text{ mm} \div 6 \text{ mm} = 4$ . The multiplier is 4.

### Chapter 2 Review Page 70 Question 11

**a**) Divide 300 steps by 6 min: 300 steps  $\div$  6 min = 50 steps/min

**b**) Divide \$3.60 by 4 L: \$3.60 ÷ 4 L = \$0.90/L

c) Divide 2184 km by 3.5 h: 2184 km  $\div$  3.5 h = 624 km/h

**d**) Divide 450 kg by 9 years:  $450 \text{ kg} \div 9 \text{ years} = 50 \text{ kg/year}$ 

#### Chapter 2 Review Page 71 Question 12

**a**) Answers may vary. Example: The ratio of the cost of bananas in Winnipeg to the cost in Little Grand Rapids is 4.98:13.95.

**b**) Answers may vary. Example: The cost of 3 kg of bananas in Winnipeg expressed as a rate is \$4.98/3 kg.

| ltem                     | Cost in<br>Winnipeg | Cost in Little<br>Grand Rapids |
|--------------------------|---------------------|--------------------------------|
| 3 kg bananas             | \$4.98              | \$13.95                        |
| Mini ravioli<br>(720 mL) | \$2.29              | \$5.49                         |
| Milk (1 L)               | \$1.39              | \$4.09                         |

c) The unit price of bananas in Winnipeg is \$4.98 divided by 3 kg:  $4.98 \div 3$  kg = 1.66/kg. The unit price of bananas in Little Grand Rapids is 13.95 divided by 3 kg:  $13.95 \div 3$  kg = 4.65/kg. The difference in price/kg is 4.65 - 1.66 = 2.99/kg.

## Chapter 2 Review Page 71 Question 13

| Appliance               | Time On (h) | Monthly Cost (\$) |
|-------------------------|-------------|-------------------|
| Fridge                  | 240         | 12.11             |
| Computer<br>and monitor | 120         | 4.26              |
| Television              | 180         | 3.46              |
| Treadmill               | 15          | 3.99              |

a) Fridge: Multiply \$12.11 by 100 to convert to cents:  $12.11 \times 100 = 1211 \text{¢}$ . To determine the unit cost, divide 1211 ¢ by 240 h:  $1211 \text{¢} \div 240$  h = 5.0 ¢/h. Computer and monitor: Multiply \$4.26 by 100 to convert to cents:  $4.26 \times 100 = 426 \text{¢}$ . To determine the unit cost, divide 426 ¢ by 120 h:  $426 \text{¢} \div 120$  h = 3.6 ¢/h. Television: Multiply \$3.46 by 100 to convert to cents:  $3.46 \times 100 = 346 \text{¢}$ . To determine the unit cost, divide 346 ¢ by 180 h:  $346 \text{¢} \div 180$  h = 1.9 ¢/h. Treadmill: Multiply \$3.99 by 100 to convert to cents:  $3.99 \times 100 = 399 \text{¢}$ . To determine the unit cost, divide 399 ¢ by 15 h:  $399 \text{¢} \div 15$  h = 26.6 ¢/h.

**b**) The television has the lowest rate of electricity consumption.

### Chapter 2 Review Page 71 Question 14

**a**) Shelley travelled 30 km/h for 2.5 h. To determine the distance she travelled, multiply 30 km/h by 2.5 h: 30 km/h  $\times$  2.5 h = 75 km.

Josh travelled 35 km/h for 1 hour and then travelled 25 km/h for 1.5 h. To determine the distance he travelled, multiply 35 km/h by 1 h, then add this amount to the product of 25 km/h and 1.5 h: 35 km/h  $\times$  1 h + 25 km/h  $\times$  1.5 h = 35 + 37.5 = 72.5 km. Shelley travelled farther.

**b**) The difference in the distance travelled is 75 km - 72.5 km = 2.5 km.

#### Chapter 2 Review Page 71 Question 15

**a**) Divide the numerator of the fraction by 4: 64 kg  $\div$  4 =16 kg.

**b**) Divide the numerator of the fraction by 8:  $84 \div 8 = 10.50$ .

c) Multiply the denominator of the fraction by 9:  $2 \min \times 9 = 18 \min$ .

#### Chapter 2 Review Page 71 Question 16

a) Set up the proportion  $\frac{3 \text{ bars}}{\$2.94} = \frac{8 \text{ bars}}{x}$ , where *x* represents the cost in dollars. To solve, multiply the denominator of the fraction by  $2.\overline{6}$ :  $\$2.94 \times 2.\overline{6} = \$7.84$ .

**b**) Set up the proportion  $\frac{1 \text{ cm}}{150 \text{ km}} = \frac{x}{800 \text{ km}}$ , where *x* represents the length in cm. To solve, multiply the numerator by  $5.\overline{3}: 1 \text{ cm} \times 5.\overline{3} = 5.3 \text{ cm}$ .

#### Chapter 2 Review Page 71 Question 17

a) Set up the proportion  $\frac{5 \text{ g}}{15 \text{ mm}} = \frac{28 \text{ g}}{x}$ , where *x* represents the length stretched in cm. To solve, multiply the denominator by 5.6: 15 mm × 5.6 = 84 mm. Change 84 mm to cm by dividing by 10: 84 mm ÷ 10 = 8.40 cm.

**b**) Set up the proportion  $\frac{5 \text{ g}}{15 \text{ mm}} = \frac{x}{32 \text{ mm}}$ , where *x* represents the mass in grams. To solve, multiply the numerator by  $2.1\overline{3}: 5 \text{ g} \times 2.1\overline{3} = 10.7 \text{ g}.$ 

c) Convert 9.9 cm to mm by multiplying by 10: 9.9 cm  $\times$  10 = 99 mm. Set up the proportion  $\frac{5 \text{ g}}{15 \text{ mm}} = \frac{x}{99 \text{ mm}}$ , where *x* represents the mass in grams. To solve, multiply the numerator by 6.6: 5 g  $\times$  6.6 = 33 g.



a)

b)

Set up the proportion  $\frac{20 \text{ m}}{12 \text{ m}} = \frac{H}{3 \text{ m}}$ , where *H* represents the height of the tree in metres. To solve, divide the numerator by 4: 20 m ÷ 4 = 5 m. The height of the tree is 5 m.



Set up the proportion  $\frac{25 \text{ m}}{8 \text{ m}} = \frac{1.6 \text{ m}}{L}$ , where *L* represents the length of the shadow in metres. To solve, divide the denominator by 15.625: 8 m ÷ 15.625 = 0.512 m. To convert 0.512 m to cm, multiply by 100: 0.512 m × 100 = 51 cm.