Chapter 2 Review Page $70 \quad$ Question 1

Answer: D
$\frac{7}{50}=\frac{14}{100}$ is a proportion.
Chapter 2 Review Page $70 \quad$ Question 2
Answer: B
$\frac{3}{5}$ is a ratio.

Chapter 2 Review Page $70 \quad$ Question 3

Answer: E
$4: 3: 2$ is a three-term ratio.

Chapter 2 Review Page $70 \quad$ Question 4

Answer: A
$\$ 2.75$ per tin is a unit price.
Chapter 2 Review Page $70 \quad$ Question 5
Answer: G
$27 \mathrm{~km} / \mathrm{h}$ is a unit rate.

Chapter 2 Review Page $70 \quad$ Question 6

a) The ratio of red squares to blue squares is $6: 6$.
b) The ratio of blue squares to total squares is $6: 12$.
c) Dividing each term of the ratio 6:12 by 6 yields the equivalent ratio 1 :
2. Dividing each term of the ratio $6: 12$ by 2 yields the equivalent ratio 3 : 6.
d) There are 6 red squares out of a total of 12 squares. Divide 6 by 12: $6 \div 12=0.5=50 \%$.

Chapter 2 Review Page $70 \quad$ Question 7

a) There are 6 two-digit numbers in the red hexagon. There are a total of 16 two-digit numbers. The ratio of two-digit numbers in the red hexagon compared to the total number of two-digit numbers is $6: 16$.

b) Divide each term of the ratio 6:16 by 2 . The fraction in lowest terms is $\frac{3}{8}$.
c) There are 8 two-digit numbers containing a 2 . There are 4 two-digit numbers in the red hexagon containing a 2 . The ratio of two-digit numbers containing a 2 compared to the number of two-digit numbers in the red hexagon that contain 2 is $8: 4$.

Chapter 2 Review Page $70 \quad$ Question 8

a) The ratio of yellow to red to silver vehicles is $1: 2: 5$.
b) There are $5+4+2+1=12$ vehicles that are silver, blue, red, or yellow. There are 20 vehicles in all. Subtract 12 from 20: $20-12=8$. There are 8 vehicles that are not silver, blue, red, or yellow.
c) There are 4 blue vehicles and 20 vehicles in total, so the ratio 4 to 20 could represent blue vehicles to total vehicles.
d) There are 5 silver vehicles. There are 8 vehicles that are not silver, blue, red, or yellow. The ratio $5: 8$ could represent the silver vehicles to the number of vehicles that are not silver, blue, red, or yellow.
e) There are 5 silver vehicles and 20 vehicles in total, so the ratio of silver to total vehicles is $\frac{5}{20}=\frac{1}{4}=25 \%$.

Chapter 2 Review Page $70 \quad$ Question 9

a) The team played 18 games and won 10 games, so it lost $18-10=8$ games.
b) The team won 10 games and lost 8 games, so the win-loss ratio is $10: 8$.

Chapter 2 Review Page 70 Question 10

a) The length of $A^{\prime} \mathrm{B}^{\prime}$ is 24 mm . The length of $A B$ is 6 mm . The ratio of the length of $A^{\prime} B^{\prime}$ to the length of $A B$ is $24: 6$.
b) The length of $\mathrm{A}^{\prime} \mathrm{C}^{\prime}$ is 48 mm . The length of AC is 12 mm . The ratio of the length of $\mathrm{A}^{\prime} \mathrm{C}^{\prime}$ to the length of AC is $48: 12$.

original

c) To determine the multiplier, divide the length of the radius of the enlargement by the length of the radius of the original: $24 \mathrm{~mm} \div 6 \mathrm{~mm}=4$. The multiplier is 4 .

Chapter 2 Review Page $70 \quad$ Question 11

a) Divide 300 steps by $6 \mathrm{~min}: 300$ steps $\div 6 \mathrm{~min}=50$ steps $/ \mathrm{min}$
b) Divide $\$ 3.60$ by $4 \mathrm{~L}: \$ 3.60 \div 4 \mathrm{~L}=\$ 0.90 / \mathrm{L}$
c) Divide 2184 km by $3.5 \mathrm{~h}: 2184 \mathrm{~km} \div 3.5 \mathrm{~h}=624 \mathrm{~km} / \mathrm{h}$
d) Divide 450 kg by 9 years: $450 \mathrm{~kg} \div 9$ years $=50 \mathrm{~kg} /$ year

Chapter 2 Review Page 71 Question 12

a) Answers may vary. Example: The ratio of the cost of bananas in Winnipeg to the cost in Little Grand Rapids is $4.98: 13.95$.
b) Answers may vary. Example: The cost of 3 kg of bananas in Winnipeg expressed as a rate is $\$ 4.98 / 3 \mathrm{~kg}$.

Item	Cost in Winnipeg	Cost in Little Grand Rapids
3 kg bananas	$\$ 4.98$	$\$ 13.95$
Mini ravioli $(720 \mathrm{~mL})$	$\$ 2.29$	$\$ 5.49$
Milk (1 L)	$\$ 1.39$	$\$ 4.09$

c) The unit price of bananas in Winnipeg is $\$ 4.98$ divided by $3 \mathrm{~kg}: \$ 4.98 \div 3 \mathrm{~kg}=$ $\$ 1.66 / \mathrm{kg}$. The unit price of bananas in Little Grand Rapids is $\$ 13.95$ divided by 3 kg : $\$ 13.95 \div 3 \mathrm{~kg}=\$ 4.65 / \mathrm{kg}$. The difference in price $/ \mathrm{kg}$ is $\$ 4.65-\$ 1.66=\$ 2.99 / \mathrm{kg}$.

Chapter 2 Review Page $71 \quad$ Question 13

Appliance	Time On (h)	Monthly Cost (\$)
Fridge	240	12.11
Computer and monitor	120	4.26
Television	180	3.46
Treadmill	15	3.99

a) Fridge: Multiply $\$ 12.11$ by 100 to convert to cents: $\$ 12.11 \times 100=1211 \not \subset$. To determine the unit cost, divide 1211ϕ by $240 \mathrm{~h}: 1211 \phi \div 240 \mathrm{~h}=5.0 \phi / \mathrm{h}$.
Computer and monitor: Multiply $\$ 4.26$ by 100 to convert to cents: $\$ 4.26 \times 100=426$.
To determine the unit cost, divide 426ϕ by $120 \mathrm{~h}: 426 \phi \div 120 \mathrm{~h}=3.6 \not \subset / \mathrm{h}$.
Television: Multiply $\$ 3.46$ by 100 to convert to cents: $\$ 3.46 \times 100=346 \phi$. To determine the unit cost, divide 346ϕ by $180 \mathrm{~h}: 346 \phi \div 180 \mathrm{~h}=1.9 \phi / \mathrm{h}$.
Treadmill: Multiply $\$ 3.99$ by 100 to convert to cents: $\$ 3.99 \times 100=399 \varnothing$. To determine the unit cost, divide $399 \not \subset$ by $15 \mathrm{~h}: 399 \not \subset \div 15 \mathrm{~h}=26.6 \not \subset / \mathrm{h}$.
b) The television has the lowest rate of electricity consumption.

Chapter 2 Review Page 71 Question 14

a) Shelley travelled $30 \mathrm{~km} / \mathrm{h}$ for 2.5 h . To determine the distance she travelled, multiply $30 \mathrm{~km} / \mathrm{h}$ by $2.5 \mathrm{~h}: 30 \mathrm{~km} / \mathrm{h} \times 2.5 \mathrm{~h}=75 \mathrm{~km}$.
Josh travelled $35 \mathrm{~km} / \mathrm{h}$ for 1 hour and then travelled $25 \mathrm{~km} / \mathrm{h}$ for 1.5 h . To determine the distance he travelled, multiply $35 \mathrm{~km} / \mathrm{h}$ by 1 h , then add this amount to the product of $25 \mathrm{~km} / \mathrm{h}$ and $1.5 \mathrm{~h}: 35 \mathrm{~km} / \mathrm{h} \times 1 \mathrm{~h}+25 \mathrm{~km} / \mathrm{h} \times 1.5 \mathrm{~h}=35+37.5=72.5 \mathrm{~km}$. Shelley travelled farther.
b) The difference in the distance travelled is $75 \mathrm{~km}-72.5 \mathrm{~km}=2.5 \mathrm{~km}$.

Chapter 2 Review Page 71 Question 15

a) Divide the numerator of the fraction by $4: 64 \mathrm{~kg} \div 4=16 \mathrm{~kg}$.
b) Divide the numerator of the fraction by $8: \$ 84 \div 8=\$ 10.50$.
c) Multiply the denominator of the fraction by $9: 2 \mathrm{~min} \times 9=18 \mathrm{~min}$.

Chapter 2 Review Page 71 Question 16

a) Set up the proportion $\frac{3 \text { bars }}{\$ 2.94}=\frac{8 \text { bars }}{x}$, where x represents the cost in dollars. To solve, multiply the denominator of the fraction by $2 . \overline{6}: \$ 2.94 \times 2 . \overline{6}=\$ 7.84$.
b) Set up the proportion $\frac{1 \mathrm{~cm}}{150 \mathrm{~km}}=\frac{x}{800 \mathrm{~km}}$, where x represents the length in cm . To solve, multiply the numerator by $5 . \overline{3}: 1 \mathrm{~cm} \times 5 . \overline{3}=5.3 \mathrm{~cm}$.

Chapter 2 Review Page $71 \quad$ Question 17

a) Set up the proportion $\frac{5 \mathrm{~g}}{15 \mathrm{~mm}}=\frac{28 \mathrm{~g}}{x}$, where x represents the length stretched in cm . To solve, multiply the denominator by $5.6: 15 \mathrm{~mm} \times 5.6=84 \mathrm{~mm}$. Change 84 mm to cm by dividing by $10: 84 \mathrm{~mm} \div 10=8.40 \mathrm{~cm}$.
b) Set up the proportion $\frac{5 \mathrm{~g}}{15 \mathrm{~mm}}=\frac{x}{32 \mathrm{~mm}}$, where x represents the mass in grams. To solve, multiply the numerator by $2.1 \overline{3}: 5 \mathrm{~g} \times 2.1 \overline{3}=10.7 \mathrm{~g}$.
c) Convert 9.9 cm to mm by multiplying by $10: 9.9 \mathrm{~cm} \times 10=99 \mathrm{~mm}$.

Set up the proportion $\frac{5 \mathrm{~g}}{15 \mathrm{~mm}}=\frac{x}{99 \mathrm{~mm}}$, where x represents the mass in grams. To solve, multiply the numerator by $6.6: 5 \mathrm{~g} \times 6.6=33 \mathrm{~g}$.

Chapter 2 Review Page $71 \quad$ Question 18

a)

12 m

3 m

Set up the proportion $\frac{20 \mathrm{~m}}{12 \mathrm{~m}}=\frac{H}{3 \mathrm{~m}}$, where H represents the height of the tree in metres. To solve, divide the numerator by $4: 20 \mathrm{~m} \div 4=5 \mathrm{~m}$. The height of the tree is 5 m .
b)

Set up the proportion $\frac{25 \mathrm{~m}}{8 \mathrm{~m}}=\frac{1.6 \mathrm{~m}}{L}$, where L represents the length of the shadow in metres. To solve, divide the denominator by 15.625 : $8 \mathrm{~m} \div 15.625=0.512 \mathrm{~m}$. To convert 0.512 m to cm , multiply by $100: 0.512 \mathrm{~m} \times 100=51 \mathrm{~cm}$.

